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Stability of Linear Systems

1. Stability will be de�ned in terms of ODE's and O�E 's

(a) ODE: Couples System

d~u

dt
= A ~u� ~f(t) (1)

(b) O�E : Matrix form from applying Eq. 1

~un+1 = C ~un � ~gn (2)

(c) For Example: Euler Explicit C = [I � hA]
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Inherent Stability of ODE's

1. Stability of Eq. 1 depends entirely on the eigensystem of A.

2. �m-spectrum of A: function of �nite-di�erence scheme,BC

For a stationary matrix A, Eq. 1 is inherently stable if,

when ~f is constant, ~u remains bounded as t!1.
(3)

3. Note that inherent stability depends only on the transient

solution of the ODE's.

~u(t) = c1
�
e�1h

�n ~x1 + � � �+ cm
�
e�mh

�n ~xm + � � �

+ cM
�
e�Mh

�n ~xM + P:S: (4)
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4. ODE's are inherently stable if and only if

<(�m) � 0 for all m (5)

5. For inherent stability, all of the � eigenvalues must lie on, or to

the left of, the imaginary axis in the complex � plane.

6. This criterion is satis�ed for the model ODE's representing both

di�usion and biconvection.
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Numerical Stability of O�E 's

1. Stability of Eq. 2 related to the eigensystem of its matrix, C.

2. �m-spectrum of C: determined by the O�E and are a function

of �m

~un = c1(�1)
n ~x1 + � � �+ cm(�m)

n ~xm + � � �

+ cM (�M )
n ~xM + P:S: (6)

3. Spurious roots play a similar role in stability.

4. The O�E companion to Statement 3 is

For a stationary matrix C, Eq. 2 is numerically stable

if, when ~g is constant, ~un remains bounded as n!1.
(7)
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5. De�nition of stability: referred to as asymptotic or time stability.

6. Time-marching method is numerically stable if and only if

j(�m)kj � 1 for all m and k (8)

7. This condition states that, for numerical stability, all of the �

eigenvalues (both principal and spurious, if there are any) must

lie on or inside the unit circle in the complex �-plane.

8. This de�nition of stability for O�E's is consistent with the

stability de�nition for ODE's.
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Review

1. Our Approach leads to

(a) The PDE's are converted to ODE's by approximating the

space derivatives on a �nite mesh.

(b) Inherent stability of the ODE's is established by guaranteeing

that <(�) � 0.

(c) Time-march methods are developed which guarantee that

j�(�h)j � 1 and this is taken to be the condition for numerical

stability.
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Time-Space Stability and Convergence of O�E's

1. A more classical view (but consistent) in the time-space sense.

(a) The homogeneous part of Eq. 2, ~un+1 = C~un

(b) Applying simple recursion ~un = Cn~u0

(c) Using vector and matrix p-norms

jj~unjj = jjC
n
~u0jj � jjC

n
jj � jj~u0jj � jjCjj

n � jj~u0jj (9)

(d) Assume that the initial data vector is bounded, the solution

vector is bounded if

jjCjj � 1 (10)

where jjCjj represents any p-norm of C.
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(e) This is often used as a su�cient condition for stability.

(f) Well known relation between spectral radii and matrix norms

i. The spectral radius of a matrix is its L2 norm when the

matrix is normal, i.e., it commutes with its transpose.

ii. The spectral radius is the lower bound of all norms.

2. The matrix norm approach and the � � � analysis are consistent

when both A and C have a complete eigensystem.
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Numerical Stability Concepts: Complex �-Plane

1. �-Root Traces Relative to the Unit Circle

2. The O�E solution to the homogeneous part

~un = c1�
n
1 ~x1 + � � �+ cm�

n
m~xm + � � �+ cM�nM~xM

3. Semi-discrete approach leads to a relation between the � and the

� eigenvalues.

4. Numerical stability of the O�E requires that �-roots lie within

unit circle in the complex �-plane.

5. Trace the locus of the �-roots as a function of the parameter �h
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Stability in the Complex-� Plane

1. De�ne �exact = e�h and Separate:

(a) Dissipation (�h = � < 0) || Convection (�h = i!)

2. Plot Real(�) and Imag(�) for varying �h of both types.

h= οο

- oo,σ = e σ = e
i h

oo,

a) Dissipation b) Convection

λ

ω
hωhλ hλ

Ι(σ) Ι(σ)

(σ) (σ)RR

h= 0λ h= 0ω

Figure 1: Exact traces of �-roots for model equations.
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� � � Relations for Various Schemes

1: � � 1 � �h = 0 Explicit Euler

2: �
2
� 2�h� � 1 = 0 Leapfrog

3: �
2
� (1 + 3

2
�h)� + 1

2
�h = 0 AB2

4: �
3
� (1 + 23

12
�h)�2 + 16

12
�h� �

5
12
�h = 0 AB3

5: �
(1 � �h) � 1 = 0 Implicit Euler

6: �(1 � 1
2
�h) � (1 + 1

2
�h) = 0 Trapezoidal

7: �
2(1 � 2

3
�h) � 4

3
� + 1

3
= 0 2nd-Order

Backward

8: �
2(1 � 5

12
�h) � (1 + 8

12
�h)� + 1

12
�h = 0 AM3

9: �
2
� (1 + 13

12
�h + 15

24
�
2
h
2)� + 1

12
�h(1 + 5

2
�h) = 0 ABM3

10: �
3
� (1 + 2�h)�2 + 3

2
�h� �

1
2
�h = 0 Gazdag

11: � � 1 � �h �
1
2
�
2
h
2 = 0 RK2

12: � � 1 � �h �
1
2
�
2
h
2
�

1
6
�
3
h
3
�

1
24
�
4
h
4 = 0 RK4

13: �
2(1 � 1

3
�h) � 4

3
�h� � (1 + 1

3
�h) = 0 Milne 4th

Table 7.1. Some � � � Relations

12



Traces of �-roots for various methods.

σ1

σ1

λ h=-2

σ1

σ1

σ2

σ2

λ h=-1

σ1
σ2

σ2 σ1

a) Euler Explicit

b) Leapfrog

c) AB2

h = 1ω

ConvectionDiffusion
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Traces of �-roots for various methods.

σ1σ1

σ1

σ1

σ2

σ3

σ1σ1

σ1

σ1

σ2

σ3

d) Trapezoidal

e) Gazdag

f) RK2

g) RK4

λ h=- οο h =  2/3ω

λ h=-2

λ h=-2.8 h =  2    2ω

Diffusion Convection
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Types of Stability

1. Conditional Stability: Explicit Methods

(a) O�E 's where �h � Constant

(b) � spectrum, e.g. �bh = � ah
�x

(1� cos(k�x) + isin(k�x))

(c) Given �x, wave speed a, and di�erence scheme: � �xed

(d) Adjust h = �t to satisfy stability bound

(e) Time accuracy: use an appropriate h

(f) Mildly-unstable: Prof. Milton VanDyke

Lock bike fork and peddle as fast as you can, you may cross

the street before you fall over and a truck hits you.
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2. Un-Conditional Stability: Implicit Methods

A numerical method is unconditionally stable if it is

stable for all ODE's that are inherently stable.

(a) O�E 's where �h!1 is stable

(b) Time accuracy: use an appropriate h

(c) Steady-State: any h which converges fast.

(d) Computationally expensive compared with Explicit Methods
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Stability Contours in the Complex �h Plane.

1. Another view of stability properties of a time-marching method

is to plot the locus of the complex �h for which j�j = 1

2. j�j refers to the maximum absolute value of any �, principal or

spurious, that is a root to the characteristic polynomial for a

given �h.

3. Inherently stable ODE's lies in the left half complex-sigma plane
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Example for Euler Explicit

1. Euler explicit: �ee = 1 + h�

(a) Wave equation: central di�erencing, �c = �ai sin(k�x)
�x

�ee = 1�
ah

�x
isin(k�x)

(b) j�eej > 1:0 for all h, unconditionally unstable

2. Wave equation: 1st order backward di�erencing,

�bh = � ah
�x

(1� cos(k�x) + isin(k�x))

(a) j�eej � 1:0 for all some h, conditionally stable

(b) Note: CFL = ah
�x

, CFL Number
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3. Complex �-plane, Euler explcit, �ee = 1 + �h

(a) Let �h = x+ iy, then �ee = 1 + x+ iy

j�eej =
p
(1 + x)2 + y2

(b) Contour of j�eej = 0:8 leads to (1 + x)2 + y2 = (0:8)2: circle in

x, y centered at x = �1 with radius 0:8 , Stable

(c) Contour of j�eej = 1:2 leads to (1 + x)2 + y2 = (1:2)2': circle

in x, y centered at x = �1 with radius 1:2, Un-Stable
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Example for Euler Implicit

1. Euler implicit: �ei =
1

1��h

(a) Wave equation: central di�erencing, �c = �ai sin(k�x)
�x

�ei =
1

1 + ah
�x

isin(k�x)

(b) j�eij < 1:0 for all h, unconditionally stable

(c) Even for Compex �h: unconditional stability
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2. Complex �-plane, Euler Implcit, �ei =
1

1��h

(a) Let �h = x+ iy, then �ei =
1

1�x�iy

j�eij =
1p

(1� x)2 + y2

(b) Contour of j�eij = 0:8 leads to (1� x)2 + y2 = ( 1
0:8 )

2: circle in

x, y centered at x = 1 with radius 1
0:8 , Stable

(c) Contour of j�eij = 1:2 leads to (1� x)2 + y2 = ( 1
1:2 )

2: circle in

x, y centered at x = 1 with radius 1
1:2 < 1:0, Un-Stable

(d) The unstable contours are in the right half of the inherent

stable of the ODE's
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Figure 2: Stability contours for the �-method.
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Stability contours for some explicit methods.
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Stability contours for Runge-Kutta methods.
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Fourier Stability Analysis

1. Classical stability analysis for numerical schemes

2. Fourier or von Neumann approach.

(a) Periodic in space derivative, similar to modi�ed wave number

(b) Usually carried out on point operators

(c) Does not depend on an intermediate stage of ODE's.

3. Strictly speaking it applies only to di�erence approximations of

PDE's that produce O�E's

4. Serves as a fairly reliable necessary stability condition, but it is

by no means a su�cient one.
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The Basic Procedure

1. Impose a spatial harmonic as an initial value on the mesh

2. Will its amplitude grow or decay in time?

3. Determined by �nding the conditions under which

u(x; t) = e�t � ei�x (11)

4. Is a solution to the di�erence equation, where � is real and ��x

lies in the range 0 � ��x � �.

5. For the general term,

u
(n+`)
j+m = e�(t+`�t) � ei�(x+m�x) = e�`�t � ei�m�x � u

(n)
j

6. u
(n)
j is common to every term and can be factored out.
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7. Find the term e��t, which we represent by �, thus:

� � e��t

8. Since e�t =
�
e��t

�n
= �n

For numerical stability j�j � 1 (12)

9. Solve for the �'s produced by any given method

10. A necessary condition for stability, make sure that, in the worst

possible combination of parameters, condition 12 is satis�ed.
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Example 1

1. Finite-di�erence approximation to the model di�usion equation

2. Richardson's method of overlapping steps.

u
(n+1)
j = u

(n�1)
j + �

2�t

�x2

�
u
(n)
j+1 � 2u

(n)
j + u

(n)
j�1

�
(13)

(a) Substitution of Eq. 11 into Eq. 13

� = ��1 + �
2�t

�x2
�
ei��x � 2 + e�i��x

�
or

�2 +

�
4��t

�x2
(1� cos��x)

�
| {z }

2b

� � 1 = 0 (14)

(b) Eq. 11 is a solution of Eq. 13 if � is a root of Eq. 14.
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(c) The two roots of Eq. 14 are

�1;2 = �b�
p
b2 + 1

(d) One j�j is always > 1.

(e) Therefore, that by the Fourier stability test, Richardson's

method of overlapping steps is unstable for all �, � and �t.
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Example 2

1. Finite-di�erence approximation for the model biconvection

equation

u
(n+1)
j = u

(n)
j �

a�t

2�x

�
u
(n)
j+1 � u

(n)
j�1

�
(15)

� = 1�
a�t

�x
� i � sin��x

2. j�j > 1 for all nonzero a and �.

3. Thus we have another �nite-di�erence approximation that, by

the Fourier stability test, is unstable for any choice of the free

parameters.
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